Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8418, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600062

RESUMO

Accumulation of bioavailable heavy metals in aquatic environment poses a serious threat to marine communities and human health due to possible trophic transfers through the food chain of toxic, non-degradable, exogenous pollutants. Copper (Cu) is one of the most spread heavy metals in water, and can severely affect primary producers at high doses. Here we show a novel imaging test to assay the dose-dependent effects of Cu on live microalgae identifying stress conditions when they are still capable of sustaining a positive growth. The method relies on Fourier Ptychographic Microscopy (FPM), capable to image large field of view in label-free phase-contrast mode attaining submicron lateral resolution. We uniquely combine FPM with a new multi-scale analysis method based on fractal geometry. The system is able to provide ensemble measurements of thousands of diatoms in the liquid sample simultaneously, while ensuring at same time single-cell imaging and analysis for each diatom. Through new image descriptors, we demonstrate that fractal analysis is suitable for handling the complexity and informative power of such multiscale FPM modality. We successfully tested this new approach by measuring how different concentrations of Cu impact on Skeletonema pseudocostatum diatom populations isolated from the Sarno River mouth.


Assuntos
Diatomáceas , Metais Pesados , Humanos , Cobre/farmacologia , Microscopia , Fractais , Metais Pesados/farmacologia
2.
ACS Appl Mater Interfaces ; 16(15): 19453-19462, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38576414

RESUMO

Inkjet printing of liquid crystal (LC) microlens arrays is particularly appealing for the development of switchable 2D/3D organic light-emitting diode (OLED) displays, as the printing process ensures that the lenses can be deposited directly and on-demand onto the pixelated OLED layer without the need for additional steps, thus simplifying fabrication complexity. Even if different fabrication technologies have been employed and good results in LC direct printing have already been achieved, all the systems used require costly equipment and heated nozzles to reduce the LC solution's viscosity. Here, we present the direct printing of a nematic LC (NLC) lens by a Drop-on-Demand (DoD) inkjet printing by a pyro-electrohydrodynamic effect for the first time. The method works at ambient temperature and avoids dispensing nozzles, thus offering a noncontact manipulation approach of liquid with high resolution and good repeatability on different kinds of substrates. NLC microlenses are printed on different substrates and fully characterized. Polarization properties are evaluated for various samples, i.e., NLC lenses on unaligned and indium-tin oxide (ITO) aligned. Moreover, an in-depth characterization of the NLC lenses is reported by polarized optical microscopy and by analyzing the birefringence in digital holographic microscopy.

3.
Biomed Opt Express ; 15(4): 2202-2223, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633099

RESUMO

Probiotic bacteria are widely used in pharmaceutics to offer health benefits. Microencapsulation is used to deliver probiotics into the human body. Capsules in the stomach have to keep bacteria constrained until release occurs in the intestine. Once outside, bacteria must maintain enough motility to reach the intestine walls. Here, we develop a platform based on two label-free optical modules for rapidly screening and ranking probiotic candidates in the laboratory. Bio-speckle dynamics assay tests the microencapsulation effectiveness by simulating the gastrointestinal transit. Then, a digital holographic microscope 3D-tracks their motility profiles at a single element level to rank the strains.

4.
Cytometry A ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420869

RESUMO

Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.

5.
Cytometry A ; 103(3): 251-259, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36028475

RESUMO

Live cells act as biological lenses and can be employed as real-world optical components in bio-hybrid systems. Imaging at nanoscale, optical tweezers, lithography and also photonic waveguiding are some of the already proven functionalities, boosted by the advantage that cells are fully biocompatible for intra-body applications. So far, various cell types have been studied for this purpose, such as red blood cells, bacterial cells, stem cells and yeast cells. White Blood Cells (WBCs) play a very important role in the regulation of the human body activities and are usually monitored for assessing its health. WBCs can be considered bio-lenses but, to the best of our knowledge, characterization of their optical properties have not been investigated yet. Here, we report for the first time an accurate study of two model classes of WBCs (i.e., monocytes and lymphocytes) by means of a digital holographic microscope coupled with a microfluidic system, assuming WBCs bio-lens characteristics. Thus, quantitative phase maps for many WBCs have been retrieved in flow-cytometry (FC) by achieving a significant statistical analysis to prove the enhancement in differentiation among sphere-like bio-lenses according to their sizes (i.e., diameter d) exploiting intensity parameters of the modulated light in proximity of the cell optical axis. We show that the measure of the low intensity area (S: I z < I th z ) in a fixed plane, is a feasible parameter for cell clustering, while achieving robustness against experimental misalignments and allowing to adjust the measurement sensitivity in post-processing. 2D scatterplots of the identified parameters (d-S) show better differentiation respect to the 1D case. The results show that the optical focusing properties of WBCs allow the clustering of the two populations by means of a mere morphological analysis, thus leading to the new concept of cell-optical-fingerprint avoiding fluorescent dyes. This perspective can open new routes in biomedical sciences, such as the chance to find optical-biomarkers at single cell level for label-free diagnosis.


Assuntos
Holografia , Microscopia , Humanos , Microscopia/métodos , Monócitos , Holografia/métodos , Óptica e Fotônica , Linfócitos
6.
Cells ; 11(16)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36010667

RESUMO

Digital Holographic Tomography (DHT) has recently been established as a means of retrieving the 3D refractive index mapping of single cells. To make DHT a viable system, it is necessary to develop a reliable and robust holographic apparatus in order that such technology can be utilized outside of specialized optics laboratories and operated in the in-flow modality. In this paper, we propose a quasi-common-path lateral-shearing holographic optical set-up to be used, for the first time, for DHT in a flow-cytometer modality. The proposed solution is able to withstand environmental vibrations that can severely affect the interference process. Furthermore, we have scaled down the system while ensuring that a full 360° rotation of the cells occurs in the field-of-view, in order to retrieve 3D phase-contrast tomograms of single cells flowing along a microfluidic channel. This was achieved by setting the camera sensor at 45° with respect to the microfluidic direction. Additional optimizations were made to the computational elements to ensure the reliable retrieval of 3D refractive index distributions by demonstrating an effective method of tomographic reconstruction, based on high-order total variation. The results were first demonstrated using realistic 3D numerical phantom cells to assess the performance of the proposed high-order total variation method in comparison with the gold-standard algorithm for tomographic reconstructions: namely, filtered back projection. Then, the proposed DHT system and the processing pipeline were experimentally validated for monocytes and mouse embryonic fibroblast NIH-3T3 cells lines. Moreover, the repeatability of these tomographic measurements was also investigated by recording the same cell multiple times and quantifying the ability to provide reliable and comparable tomographic reconstructions, as confirmed by a correlation coefficient greater than 95%. The reported results represent various steps forward in several key aspects of in-flow DHT, thus paving the way for its use in real-world applications.


Assuntos
Holografia , Microscopia , Animais , Fibroblastos , Holografia/métodos , Camundongos , Microfluídica , Microscopia/métodos , Tomografia/métodos
7.
Sci Total Environ ; 815: 152708, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990679

RESUMO

Micron size fiber fragments (MFFs), both natural and synthetic, are ubiquitous in our life, especially in textile clothes, being necessary in modern society. In the Earth's aquatic ecosystem, microplastic fibers account for ~91% of microplastic pollution, thus deserving notable attention as one of the most alarming ecological problems. Accurate automatic identification of MFFs discharges in specific upstream locations is highly demanded. Computational microscopy based on Digital Holography (DH) and machine learning has been demonstrated to identify microplastics in respect to microalgae. However, DH is a non-specific optical tool, meaning it cannot distinguish different types of plastic materials. On the other hand, materials-specific assessments are pivotal to establish the environmental impact of different textile products and production processes. Spectroscopic assays can be employed to identify microplastics for their intrinsic specificity, although they are generally low-throughput and require large concentrations to enable effective measurements. Conversely, MFFs are usually finely dispersed within a water sample. Here we rely on a polarization-resolved holographic flow cytometer in a Lab-on-Chip (LoC) platform for analysing MFFs. We demonstrate that two important objectives can be achieved, i.e. adding material specificity through polarization analysis while operating in a microfluidic stream modality. Through a machine learning numerical pipeline, natural fibers (i.e. cotton and wool) can be clearly separated from synthetic microfilaments, namely PA6, PA6.6, PET, PP. Moreover, the proposed system can accurately distinguish between different polymers under investigation, thus fulfilling the specificity goal. We extract and select different features from amplitude, phase and birefringence maps retrieved from the digital holograms. These are shown to typify MFFs without the need for sample pre-treatment or large concentrations. The simplicity of the DH method for identifying MFFs in LoC-based flow cytometers could promote the use of polarization resolved field-portable analysis systems suitable for studying pollution caused by washing processes of synthetic textiles.


Assuntos
Holografia , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Microplásticos , Plásticos , Águas Residuárias , Poluentes Químicos da Água/análise
8.
Sci Rep ; 9(1): 9801, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278372

RESUMO

This paper proposes an optimized implementation of the double-exposure method with emphasis on the uniformity and minimization of the residual phase imperfections in cross-referenced holographic microscopy (CRHM). The quantitative phase images are restored from single-shot cross-referenced holograms, which are separated in the Fourier space and processed to eliminate effects caused by imperfections of the optical path and sample background. CRHM is implemented in a microscope configuration supplemented by a Sagnac interference module providing splitting and shearing of the sample and reference waves. Utilization of the averaging process, which enhances precision of quantitative phase image (QPI) reconstruction, applicable in the methods with a replicated field of view is also presented. The high temporal stability of CRHM is verified in calibration measurements and its application potential demonstrated by a quantitative restoration of the phase resolution target and imaging of biological samples including cheek and sperm cells.

9.
ACS Appl Bio Mater ; 2(11): 4675-4680, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021464

RESUMO

Red blood cells on the surface of a lithium niobate crystal can be used as optical lenses for direct writing of laser-induced refractive index changes. The writing process by such a photomask made of biological lenses is due to the photorefractive effect. Wavefront analysis by a digital holographic microscope is performed for deep and accurate evaluation of local refractive index changes. Different focusing properties can be imprinted on the crystal depending on which type of RBC is employed, discocytes or spherical-like RBCs. The possibility to fix into a solid material the optical fingerprint of the RBCs will have an impact on both diagnostics and cell\material interfacing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA